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Abstract

Modern electronic commerce creates significant challenges for decision-makers.
The Trading Agent Competition for Supply Chain Management (TAC SCM) is
an annual competition among fully-autonomous trading agents designed by teams
around the world. Agents attempt to maximize profits in a supply-chain scenario
that requires them to coordinate procurement, production, and sales activities in
competitive markets. An agent for TAC SCM is a complex piece of software that
must operate in an economic environment where information is only partially visi-
ble. We report on results of an informal survey of agent design approaches among
the competitors in TAC SCM, and then we describe and evaluate the design of our
MinneTAC trading agent. We focus on the use of evaluators — configurable, compos-
able modules for data analysis, modeling, and prediction that are chained together
at runtime to support agent decision-making. Through a set of examples, we show
how this structure supports sales and procurement decisions, and how those decision
process can be modified in useful ways by changing evaluator configurations.
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1 Introduction

Electronic commerce is a compelling application area for autonomous agents.
On one side, decisions can be relatively clear-cut (buy or sell, set a price,
submit a bid, award bids, etc.), and communications among agents and be-
tween agents and their environments can be constrained. On the other side,
an economically-motivated autonomous agent must not only sense and act in
its environment; it must also compete. Depending on the details of the market
environment, rational behavior may involve strategic elements in addition to
simple utility-maximization.

Organized competitions can be an effective way to drive research and under-
standing in complex domains, free of the complexities and risk of operating
in open, real-world economic environments. Artificial economic environments
typically abstract certain interesting features of the real world, such as markets
and competitors, demand-based prices and cost of capital, and omit others,
such as personalities, taxes, and seasonal demand.

Our primary interest in this paper is to examine some of the software design
tradeoffs in building an autonomous agent for the Supply-Chain Management
Trading Agent Competition [13] (TAC SCM), and to describe in some detail
the design of the MinneTAC trading agent, which has competed effectively in
TAC SCM for several years.

We describe how we have attempted to respond both to the challenges of the
game scenario as well as to the need to support multiple relatively independent
research efforts that are focused on meeting one or more of those challenges.
We also evaluate the success of our design in terms of the performance and
competitiveness of the agents that have been implemented with it, the usability
of the design and its core abstractions from the standpoint of researchers who
must work within its confines, and against a set of standard design-quality
metrics.

In Section 2, we review the TAC SCM game scenario, focusing on the deci-
sion challenges presented by that scenario. We discuss the results of a survey
we have conducted into the design philosophy and features of other agents
designed for the same competition scenario. Section 4 provides a high-level
overview of the design of MinneTAC, focusing on the core framework of the
agent and its use of events and evaluators to structure the agent’s decision pro-
cesses. Section 5 provides multiple examples of evaluator-supported decision
processes, and shows how they may be reconfigured both manually through
configuration files, and automatically by the agent itself using selectors. Fi-
nally, Section 6 presents a brief evaluation of the architecture.



2 Overview of the TAC SCM game

In a TAC SCM game [13], each of the competing agents plays the part of
a manufacturer of personal computers. Agents compete with each other in
a procurement market for computer components, and in a sales market for
customers. A typical game runs for 220 simulated days over about an hour of
real time. Each agent starts with no inventory and an empty bank account, and
must borrow (and pay interest) to build up inventory of computer components
before it can begin assembling and shipping computers. The agent with the
largest bank account at the end of the game is the winner.

2.1 Game scenario

Customers express demand each day by issuing a set of Requests for Quotes
(RFQs) for finished computers. Each RFQ specifies the type of computer, a
quantity, a due date, a reserve price, and a penalty for late delivery. Each agent
may choose to bid on some or all of the day’s RFQs. For each RF(Q, the bid
with the lowest price will be accepted, as long as that price is at or below the
customer’s reserve price. Once a bid is accepted, the agent is obligated to ship
the requested products by the due date, or it must pay the stated penalty for
each day the shipment is late. Agents do not see the bids of other agents, but
aggregate market statistics are supplied to the agents periodically. Customer
demand varies through the course of the game by a random walk.

Agents assemble computers from parts, which must be purchased from sup-
pliers. When agents wish to procure parts, they issue RFQs to individual
suppliers, and suppliers respond with bids that specify price and availability.
If the agent decides to accept a supplier’s offer, then the supplier will ship the
ordered parts on or after the due date (supplier capacity is variable). Supplier
prices are based on current uncommitted capacity.

Once an agent has the necessary parts to assemble computers, it must schedule
production in its finite-capacity production facility. Each computer model re-
quires a specified number of assembly cycles. Assembled computers are added
to the agent’s finished-goods inventory, and may be shipped to customers to
satisfy outstanding orders.

2.2 Agent decisions

An agent for the TAC SCM scenario must make the following four basic deci-
sions during each simulated “day” in a competition:



(1) decide what parts to purchase, from whom, and when to have them de-
livered (Procurement).

(2) schedule its manufacturing facility (Production).

(3) decide which customer RFQs to respond to, and set bid prices (Sales).

(4) ship completed orders to customers (Shipping).

These decisions are supported by models of the sales and procurement markets,
and by models of the agent’s own production facility and inventory situation.

The details of these models and decision processes are the primary subjects of
research for participants in TAC SCM. In particular, the Sales and Procure-
ment markets are highly variable, and many important factors, such as current
capacity, outstanding commitments of suppliers, sales volumes and price dis-
tribution in the customer market, are not visible to the agents. In addition,
the number of competing agents in the competition scenario is relatively small
(just 6 in a single simulation). This means that agents have oligopoly power —
the actions of individual agents can have a significant effect on the markets,
and agents are motivated to engage in strategic manipulation of the markets
to the extent allowed by the rules of the competition.

Beyond the challenges presented by the TAC SCM problem domain, our re-
search needs present several additional issues. The most important is that
our design must support multiple independent developers pursuing their own
lines of research. The TAC SCM scenario presents a number of relatively inde-
pendent decision problems, and there are many possible approaches to solving
them. A good design must make it relatively easy for a researcher to focus on a
particular subproblem without having to worry about getting a whole agent to
work correctly. In addition, we expect to continue participating in TAC SCM
over several years, and we want to avoid redesign and re-implementation over
that time, even though we expect significant details of the game scenario to
change from one year to the next.

Decision processes may involve somewhat arbitrary parameters, and their in-
teractions and the sensitivity of agent performance to the settings of those
parameters may not be well-defined. This is true even in cases where the
agent is designed specifically to minimize the number of such parameters by
use of optimization methods [27]. To understand the effect of settings the var-
ious parameters used in an agent, we need to be able to configure agents with
different combinations of decision processes and their underlying models and
parameters.

Experimental research requires data. The TAC SCM game server keeps data
from each game played, which may be used to understand and compare the
performance of competing agents. However, it is also necessary to integrate
game data with information about the agent’s internal state during the game,



in order to understand the detailed performance of agent decision processes.
This suggests a need for a data logging capability that can be easily configured
to extract needed data from a running agent, while keeping the size of log files
under control.

3 TAC SCM Agent Design

We present here the results of an informal survey of research and development
practices and related design issues for autonomous trading agents among par-
ticipants in the Trading Agent Competition for Supply-Chain Management.
The goal of the questionnaire was to understand the commonality and vari-
ability of design principles for agents competing in TAC SCM. We report our
findings from a questionnaire that we sent to the TAC SCM community via
the TAC SCM discussion email list in May 2007. The questionnaire was closed
by September 2007 and was completed by many of the best teams in previ-
ous tournaments. We also supplement the practitioners’ gained wisdom with
relevant academic and industry papers. The questions used in the survey are
given in an appendix to this paper. Table 1 lists the teams who responded
to the questionnaire, along with their institutions and the survey respondents
(in most cases, a student and a faculty advisor).

After a review of the completed questionnaires, we categorized the results
according to our understanding of the research agendas of the teams, and by
the specific architectural emphases the teams identified in their agent designs
that support those research agendas. To ensure completeness and a measure
of fairness, we compiled these results into a working paper and sent it back to
all survey participants for feedback and corrections. Most participants agreed
with our categorizations. A few added details. Table 2 gives an overview of
our findings, including updates from survey participants.

Kiekintveld et al. [27] identify three key issues that a successful TAC SCM
agent must address: dealing with substantial uncertainty in a highly dynamic
economic environment, in competition with other self-interested agents whose
behavior is naturally strategic. We observe a convergence between these issues
and our independent findings from the TAC SCM questionnaire. Analysis of
the questionnaire results shows how these issues, in conjunction with a variety
of general research agendas, has driven the architectural styles adopted by the
various teams.



Table 1
Teams participating in the TAC SCM architecture design survey.

Team University Team contact

Botticelli (B) Brown University (USA) Amy Greenwald
Victor Naroditskiy

CMieux (CM) Carnegie Mellon University (USA) | Michael Benisch

Norman Sadeh

CrocodileAgent (CA) | University of Zagreb (Croatia) Ana Petric
Vedran Podobnik
DeepMaize (DM) University of Michigan (USA) Chris Kiekintveld

Michael Wellman

Foreseer (F) Cork Constraint Computation Kenneth Brown
Centre (Ireland) David Burke

Mertacor (M) Aristotle University of Pericles Mitkas
Thessaloniki (Greece) Andreas Symeonidis

MinneTAC (MT) University of Minnesota (USA) John Collins

Wolfgang Ketter

Southampton (S) University of Southampton (UK) | Minghua He

Nick Jennings

TacTex (TT) University of Texas (USA) David Pardoe

Peter Stone

Tiancalli (T) Benemerita Universidad Darnes Ayala

Autonoma de Puebla (Mexico) Daniel Galindo

3.1 Constraint optimization

A supply-chain agent situated in a trading environment has to comply with
many internal and external constraints. These constraints apply to different
parts of the supply-chain, such as procurement (e.g. reputation effect), produc-
tion (e.g. limited production capacity), sales (e.g. can’t sell more than effec-
tively demanded by the market), and shipping (e.g. can’t ship more than cur-
rently in the finished goods inventory). Nearly all the teams who answered our
questionnaire applied constrained optimization in some way, so we have listed
here the ones who highlighted it in their papers and the questionnaire response.
The teams who focus on real time optimization, Botticelli [4], DeepMaize [26],



Table 2
Research agendas of teams and their architectural emphasis.

Research Agenda Team Architectural Emphasis
Constraint optimization | B, CM, F, MT 3rd party packages

CM, DM Internal optimization methods
Machine learning CM, DM, MT, TT | External analysis framework,

3rd party packages
Dynamic supply-chain CM, F, M, MT, T | Flexibility

Scalability CA Distributed Computation
Architecture CA IKB model for physical
distribution
MT Blackboard architecture with

evaluator chain

Empirical game theory DM External analysis framework
Decision coordination CM, DM, M, S Modularity
Dealing with uncertainty | B, F, S, M'T Modularity

Foreseer [8], MinneTAC [23] use mainly third party optimization packages, in-
cluding CPlex?, Tlog OPL? | and Ip_solve® . An exception is CMieux [3] which
uses an internally-developed implementation of a search algorithm to solve a
continuous knapsack problem for pricing customer offers.

3.2 Machine learning

Many agent designs depend on an external bootstrapping process to con-
struct models and set parameters, using machine learning algorithms to learn
from historical market data. Many agents have also some learning ability dur-
ing operation to adapt to changing situations. Successful teams are generally
those who perform a thorough off-line bootstrapping as well as online ma-
chine learning. CMieux [5], MinneTAC [23], and TacTex [30] identified the
need to support learning and adaptation as primary concerns in the design of
their agents. To support research agendas with a strong emphasis on machine
learning, both CMieux [5] and TacTex [30] use the Weka® [39] machine learn-

http://www.ilog.com /products/cplex/
http://www.ilog.com/products/oplstudio/
http://sourceforge.net /projects/Ipsolve
http://www.cs.waikato.ac.nz/ml/weka/
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ing tool set. MinneTAC is using Matlab® in combination with the Netlab’
neural network toolbox to develop and train market models, and to bootstrap
the agent with the resulting models. At runtime, MinneTAC updates and ad-
justs those models using feedback and machine learning algorithms embedded
in Evaluators (see Section 4.4) written in Java.

3.3 Management of dynamic supply chains

Traditionally, supply chains have been created and maintained through the
interactions of human representatives of the various enterprises (component
suppliers, manufacturers, wholesalers/distributors, retailers and customers)
involved. However, the recent advent of autonomous trading agents opens
new possibilities for automating and coordinating the decision making pro-
cesses between the various parties involved. A good overview of multi-agent
based supply chain management outside of TAC SCM is given in [10]. The
TAC SCM simulation is an abstract model of a highly dynamic direct sales
environment [12], as exemplified by Dell Inc.®, for procurement, inventory
management, production, and sales.

Given the dynamic nature of the TAC SCM environment and the challenges in
the real world, many teams have a strong research focus on dynamic supply-
chain behavior. These include CMieux [5], Foreseer [8], Mertacor [28,11], Min-
neTAC [24], and Tiancalli [15]. As a consequence of this research agenda the
teams strive for high flexibility in their agent design, so that they can easily
accommodate changes arising from new theory or from changes in the game
environment itself. These responses are coherent with classical and contem-
porary literature in software engineering, which recognizes the central role
of flexibility in software design for environments where ability to adapt to
changing requirements is a dominant factor. This is indicative of an unsolved
problem; since designing for high flexibility means that one doesn’t know how
to design it correctly.

3.4 Scalability

The CrocodileAgent [31] group at Zagreb is part of a larger group that is
focused on autonomous agents for management of large-scale telecommunica-
tion networks. They view TAC SCM as an interesting challenge in building

6 http://www.mathworks.com/
" http://www.ncrg.aston.ac.uk/netlab/
8 http://www.dell.com/



an agent that can successfully operate in a dynamic, competitive environ-
ment, but they are also concerned with scalability and other issues that go
far beyond the TAC SCM scenario. They have chosen to base their design on
the JADE? [2] agent framework, since it has been well-proven for large-scale
multi-agent situations with a huge number of entities on both the consumer,
the business, or both sides of a supply chain (such as a telecom environment).

3.5  Architecture

CrocodileAgent [31] and Southampton SCM [18] have structured their agent
decision processes around the the IKB model [36], a three layered agent-based
framework for designing strategies in electronic trading markets. The first layer
is the Information layer (I) which contains data gathered from the environ-
ment. The Knowledge layer (K) represents the knowledge extracted from the
data stored in the information layer, and the Behavioral layer (B) encapsulates
the reasoning and decision-making components that ultimately drive agent be-
havior. As reported by the CrocodileAgent [31] team, an advantage of using
JADE is that the separation of I, K & B layers enables physical distribution of
layers on multiple computers. In such a design, information layer agents parse
out information from the TAC SCM server messages, while information and
knowledge flows are implemented as JADE agent communication (ACL -
based messages). The separation of I, K & B layers and the introduction of
JADE agent platform to the TAC SCM domain causes a much more complex
system with lots of intercommunication, as reported by the CrocodileAgent
team. CrocodileAgent deals with this overhead in TAC SCM, since their main
agenda is to use JADE agents in their research regarding the next generation
of telecommunication networks.

A MinneTAC agent is a component based framework. All data that must
be shared among components are kept in the REPOSITORY, which acts as
a blackboard [9]. For details on the MinneTAC design we refer the reader
to Section 4. An interesting outcome of the questionnaire is that only the
MinneTAC team has identified minimizing the learning curve for a researcher
who wishes to work on a specific subproblem as an important design criterion.

3.6 Empirical game theory

The DeepMaize [27,37,19] group at Michigan pursues empirical game-theoretic
analysis as one of their major research cornerstones. They employ an experi-

9 http://jade.tilab.com/
10 Agent Communication Language



mental methodology for explicit game-theoretic treatment of multi-agent sys-
tems simulation studies. For example, they have developed a bootstrap method
to determine the best configuration of the agent behavior in the presence of
adversary agents [19]. They also use game-theoretic analysis to assess the
robustness of tournament rankings to strategic interactions. Many of their
experiments require hundreds to thousands of simulations with a variety of
competing agents. To support their work they have developed an extensive
framework for setting up and running experiments, and for gathering and
analyzing the resulting data!!.

3.7 Decision coordination

Decision coordination is an important element of the research agendas for the
DeepMaize [26], CMieux [5], MinneTAC [24], and Southampton [18] teams.
This problem is commonly viewed as one of enabling independent decision
processes to coordinate their actions in useful ways while minimizing the ne-
cessity to share representation and implementation details. This is important
because of the difficulty in treating all the decisions an agent must make as a
single problem. Indeed, real-world organizations often do a poor job of coordi-
nating procurement and sales because they are functions of widely separated
units within a typical industrial concern.

CMieux is the prime example of an agent that supports decision coordination
explicitly in their design, incorporating a “strategy” module that dynami-
cally sets product-mix and sales-volume targets in order to coordinate sales
and procurement activities. MinneTAC uses a blackboard approach to allow
decision processes to coordinate their actions through a common state repre-
sentation, and Southampton uses the hierarchical IKB approach, in which the
Knowledge layer of the IKB model could be viewed as a type of blackboard.
DeepMaize [26] treats the combined decisions as a large optimization problem,
decomposed into subproblems using a “value-based” approach. The result is
that much of the coordination among decision processes is effectively man-
aged by assigning values to finished goods, factory capacity, and individual
components over an extended time horizon.

A particularly interesting approach to the decision coordination problem was
taken by RedAgent [21], which used loosely-coupled “sub-agents” competing
with each other in internal auction-based markets for finished goods, pro-
duction capacity, and components. This achieved a radical decoupling of the
various components, but proved to be uncompetitive after the game design
was adjusted in 2005 to defeat some of the simplest approaches that lacked

1P, Jordan, private communication
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adequate coordination among decisions. Specifically, agents that focused pro-
curement only on keeping the factory in full production found themselves over-
producing when the balance between factory capacity and expected customer
demand was adjusted.

There are many different ways to coordinate the decision that every TAC SCM
agent makes in support of sales, procurement, production scheduling, and
sometimes inventory management. In this kind of setting it is advantageous
to be able to replace individual decision-oriented components of an agent
and compare their performances, e.g. compare two different sales modules on
final profit. Many teams mentioned “modularity” as a separate goal for their
designs, but we think that this is really a precondition that allows this sort of
experimental flexibility.

3.8 Dealing with uncertainty

The TAC SCM competition scenario is designed to force agents to deal with
uncertainty in many dimensions. Sodomka et al. [34] provide a good overview
of the sources of uncertainty in the context of an approach to doing empirical
study of agent performance. The Botticelli group clearly identifies the prob-
lem of dealing with uncertainty as one of their main research goals in [4].
SouthamptonSCM [18] employs a bidding strategy that uses fuzzy logic to
adapt prices according to the uncertain market situation. SouthamptonSCM
told us in the questionnaire that their software package for fuzzy reasoning on
price adaptation will be released soon.

The key architectural decision in Foreseer [8] is that all constraint optimiza-
tion models used in the agent are subject to uncertainty. In Foreseer both the
customer bidding model and the component procurement model are subject to
uncertainty. Both are parameterized, such that probability distributions rep-
resenting the current belief of the state of the market can be passed into and
used by the models. Given the uncertainty of the market, these beliefs allow
Foreseer to represent different possible market states with different probabili-
ties.

MinneTAC [24] observes market conditions to characterize the microeconomic
situation of the market, economic regimes, and to predict future market sit-
uations. MinneTAC maintains a distribution of predicted economic regimes
and uses this information to make both tactical decisions, such as pricing, and
strategic decisions, such as product mix and production planning.
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3.9  Published TAC SCM designs

Several participants in TAC SCM have described their agent designs. He et
al. [18] have adopted a design consisting of three internal “agents” to han-
dle Sales, Procurement, and Production/Shipping. Sales decisions use a fuzzy
logic module. Some algorithmic details are given, but there is little further
detail on the architecture of the agent. TacTex05, the winner of the 2005
competition [30] is based on two major modules, a Supply Manager that han-
dles procurement and inventory, and a Demand Manager that handles sales,
production, and shipping. These modules are supported by a supplier model,
a customer demand model, and a pricing model that estimates sales order
probability.

The overall survey outcome shows that there are common themes emerging
from the different research groups on how to design a successful agent ar-
chitecture. These include common software engineering quality criteria, such
as modularity, low coupling, and separation of concerns, in addition to more
problem-specific approaches, such as coordination of sales and procurement
through internal models of inventory and prices, and assigning current and fu-
ture value to inventory and production resources. There are also some strong
differences, such as how to organize the communication between the different
modules and which modules should own the data for specific tasks. These
findings, and the fact that after several years of competition there is still
much to be learned, suggest that the recipe for a full competent supply-chain
trading agent is still an unsolved problem, even for an abstract, constrained
environment like TAC SCM. In summary we can say that agents designed
for highly dynamic, uncertain, or complex environments must be capable of
flexible autonomous actions [40].

4 The design of MinneTAC

The MinneTAC agent is intended to be both a research vehicle and a teach-
ing vehicle. As a research vehicle, it must be able to compete effectively in
the annual TAC SCM tournaments, and it must provide an array of features
to support a research agenda, including easy reconfiguration and good data
collection capabilities. As a teaching vehicle, it must be an example of good
design, and it must make it easy for students to make substantial contributions
within the scope of a one or two semester project.

The design of MinneTAC follows a component-oriented approach [35]. The
idea is to provide an infrastructure that manages data and interactions with
the game server, that cleanly separates behavioral components from each

12



other, and that allows easy substitution of different implementations for the
major decision processes. This allows individual researchers to encapsulate
agent decision problems within the bounds of individual components that
have minimal dependencies among themselves. The result is a system that
is easy to modify and configure, but there is an essential tension between a
highly modular structure and the need for effective integration of the various
decision processes. For example, sales and procurement decisions must be co-
ordinated so that the parts that are purchased can be assembled and sold at a
profit, and so that inventories can be replenished as they are depleted by sales.
We address this tension with two design features: a common data store that
contains the agent’s global state, and a set of configurable evaluation modules
that are shared among the decision processes. A specific example is given in
Section 5.3.

Two pieces of software form the foundation of MinneTAC: the Apache Ex-
calibur component framework [14], and the “agentware” package distributed
by the TAC SCM organizers. Excalibur provides the standards and tools to
build components and configure working agents from collections of individual
components, and the agentware package handles interaction with the game
server.

4.1 A brief overview of Fxcalibur

Apache Excalibur is a general-purpose framework for building highly config-
urable systems out of independent components. It is widely used as a founda-
tion for middleware and for server software, such as the OpenORB CORBA
implementation 2 and the Cocoon web application framework '3 | but its use in
the implementation of autonomous agents is rare. It does not provide the “clas-
sic” facilities for agent design, such as knowledge representation, inter-agent
communication, reasoning facilities, or a planning infrastructure. Instead, it
provides a means to build complex, robust systems from sets of role-based,
configurable components. This satisfies a primary goal of MinneTAC, allow-
ing researchers to work independently on individual decision problems with
minimal need for detailed coordination with each other.

Excalibur components are independent entities, in the sense that they typi-
cally have very few dependencies on each other, and minimal, well-defined de-
pendencies on the Excalibur framework itself. Components are coarse-grained
entities, each typically composed of a number of classes. Control inversion puts
primary control in the Excalibur “container”, which loads components, sets

12 OpenORB.sourceforge.net
13 cocoon.apache.org
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up logfiles, configures the components, and starts any components that run
independent threads.

Each Excalibur component is designed to fulfill a specific role, and an Excal-
ibur system is a set of roles, each of which is mapped to a specific Java class.
A role has a name, a set of responsibilities, and an interface specification. An
Excalibur application is composed of the Excalibur infrastructure, a container
that initializes the system, and the components specified by the configuration.
Configuration files specify the roles, the classes that satisfy those roles, and
configuration parameters for those classes. The framework reads the configu-
ration files, loads the specified classes, and invokes the Excalibur interfaces on
each component.

4.2 MinneTAC architecture

Following Bass et al. [1], we use the term “architecture” to refer to the set
of components that make up our system, along with their properties and
relationships. A MinneTAC agent is a set of components layered on the Ex-
calibur container, as shown in Figure 1. In the standard arrangement, four
of these components are responsible for the major decision processes: SALES,
PROCUREMENT, PRODUCTION, and SHIPPING. In some configurations, an Lp-
Solver component is included to provide optimization services, and in some,
the PROCUREMENT module is split in two, separating the problem of formu-
lating RFQs for suppliers from the problem of deciding which supplier offers
to accept. All data that must be shared among components is kept in the
REPOSITORY, which acts as a blackboard [9] and is visible to all other compo-
nents. The ORACLE hosts a large number of smaller components that maintain
market and inventory models, and do analysis and prediction. The COMMUNI-
CATIONS component handles all interaction with the game server. By minimiz-
ing couplings between the components, this architecture completely separates
the major decision processes, thus allowing researchers to work independently.
Ideally, each component depends only on Excalibur and the REPOSITORY.

The agent opens four configuration files when it starts. Two of them are inter-
esting in the context of this paper. The system configuration file specifies the
set of roles that make up the system, along with the classes that implement
those roles. This allows the major components (SALES, PROCUREMENT, PRO-
DUCTION, SHIPPING) to be swapped out with a simple edit. The component
configuration file specifies runtime configuration options for each component.
For example, the SALES component may have a parameter that controls the
maximum level of overcommitment of its existing inventory or capacity when it
makes customer offers. More importantly, the various Evaluators are specified
and configured in this file (see Section 4.4.1).

14
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Fig. 1. MinneTAC Architecture. Arrows indicate dependencies.

In the following sections, we provide more detail on the three “core” com-
ponents of MinneTAC, the COMMUNICATIONS, REPOSITORY, and ORACLE
components. The other components implement the various decision processes,
and should be thought of as “role interfaces” since multiple implementations
exist for each of them. To flesh out this concept, we also provide in Section 5 an
in-depth look at two of our Sales component implementations, the price-driven
sales manager used in the 2005 and 2006 competitions, and the quota-driven
sales manager used in the 2007 competition, as well as a brief overview of one
of our procurement implementations.

4.8  Communications

A TAC SCM Agent is a “reactive system” in the sense that it responds to
events coming from the game server [38]. These events are in the form of
messages that inform the agent of changes to the state of the world: Customer
RFQs and orders, supplier offers and shipments, etc. The game is designed
so that each simulated day involves a single exchange of messages; a set of
messages sent from the game server to the agent, and a set returned by the
agent back to the server. For example, from the standpoint of the agent, each
day’s incoming messages includes the set of customer RFQs for the day, and
the return set of messages includes the agent’s bids for those RFQs.

Figure 2 shows the communication activity for a typical game day. The gen-
eral pattern is that the game server sends out a set of messages representing
supplier and customer activity, as well as inventory and bank-account status
data, the agent deliberates for some time, and then the agent responds with a
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Fig. 2. One day of communications activity between the game server and an agent.

set of messages that respond to the customer RFQs, and supplier offers for the
current day. The agent must also specify the production and shipping sched-
ules for the following day, and it may issue additional supplier RFQs each day.
The length of a simulation day is fixed by the server; in the standard tourna-
ment configuration, days are 15 seconds long. If the agent does not return its
messages within this interval, they are lost.

4.4  Repository

The REPOSITORY is the one component that is visible to all the other com-
ponents. From a software architecture standpoint, the REPOSITORY plays the
part of the Blackboard in the Blackboard pattern [9]. The general idea of a
Blackboard system is that data and partial solutions are shared among a num-
ber of “knowledge sources” that can access and update the central blackboard
when they have something to contribute. The ORACLE and its Evaluators
(see Section 4.4.1) are the primary knowledge sources, adding Evaluations
to the data elements in the REPOSITORY. The decision components (SALES,
PROCUREMENT, PRODUCTION, and SHIPPING), responding to REPOSITORY
state-transition events, drive the process indirectly, by requesting Evaluations,
and by recording their decisions on the blackboard. We now explain in more
detail how this works, using two major features of the REPOSITORY: events
and evaluations.
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Events. As shown in Figure 2, the agent does not need to react to individual
messages from the server. Instead, it waits until after all the day’s messages
have been received, and then considers all of them together. In fact, there is a
special message, the end-of-data message which contains no data but simply
tells the agent that the day’s input messages are complete. MinneTAC handles
all data messages by storing them in the REPOSITORY. When the end-of-data
message is handled by the REPOSITORY, it notifies the other components that
the day’s data input is complete. Components use this notification as the
signal to perform their deliberations, retrieving data and evaluations from the
repository, and recording the results of their decisions back into the repository.
Finally, the resulting decisions, in the form of RFQs, offers, orders, and daily
production and shipping schedules, are retrieved from the REPOSITORY by
the COMMUNICATIONS component and sent to the server.

Figure 3 shows state transitions and their associated events. When a com-
ponent receives the data-available event, it is able to inspect the incoming
data for the day’s transactions and perform whatever analysis is needed to
update its models. When a component receives the decision event, it is ex-
pected to finalize its decisions and record its outgoing messages back in the
REPOSITORY.

game config
Start of |/ Message/ incoming/
ame message
Start 9 receiving

message/ ) )
incoming

message/

end-of-data message/
data-available event

Y
of da [
Once per day - Y /send messages
last /decision event

day/
Wy |

@_@ deciding
game

Fig. 3. States and transitions in the REPOSITORY component. Arcs are labeled with
event/action pairs.

final config message/
start—-of-game event

In this interaction, the REPOSITORY acts as a Subject and the other compo-
nents as Observers in the Observer pattern [16]. An important limitation of
the Observer pattern is that the sequence of notifications is not controlled,
although in most implementations it is repeatable. But the order of event
processing is important for the MinneTAC decision processes. For example,
it greatly simplifies the Sales decision process to know that the current day’s
Shipping decisions have already been made. To allow event sequencing without
introducing new dependencies, two events are generated by the REPOSITORY
for each day of a game. The data-available event is a signal to read the in-
coming messages and do basic data analysis. The subsequent decision event
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is a signal to make the daily decisions and post the outgoing messages back
in the REPOSITORY. The decision event itself provides an additional level of
sequence control by allowing components to “refuse” the event until one or
more other components (identified by role names) have made their decisions.
Components that have refused the event will receive it again once all other
components have had an opportunity to process it. To ensure that SALES de-
cisions are made after SHIPPING decisions, SALES must refuse to accept the
decision event until after it sees “shipping” among the roles that have already
processed it. No additional dependencies are introduced by this mechanism,
since the role names are simply added to the event object itself, and the names
come from the component configuration file, not the code.

Evaluators. As indicated earlier, a goal of the MinneTAC design is to min-
imize coupling between the various components, while providing appropriate
tools to coordinate decisions. How can the decision components communicate,
if they cannot depend on one another? Our approach is to use evaluations
that are accessible through the various data elements in the REPOSITORY.
The general idea is that when a component needs to make a decision (for
example, SALES composing its bids for customer requests or PROCUREMENT
generating its supplier requests), it will inspect the available data, update es-
timates of trends and probabilities, and possibly run some utility-maximizing
function. The available data consists of any data maintained internally by the
component, and the data in the repository. Any data reductions or analyses
that are performed on REPOSITORY data can be encapsulated in the form
of evaluations, and thereby are made available to all components. In Min-
neTAC, these analyses are implemented by the ORACLE component through
a configurable set of evaluators.

<<Interface>>
Evaluable
+getEvaluation(name)

<<singleton>> <<Interface>>
EvaluationFactory Evaluator
+addEvaluator(evaluator) <—> +evaluate(evaluable)
+evaluate(evaluable, name) +getName()

Fig. 4. Evaluables and Evaluators.

All the major data elements in the REPOSITORY (such as RFQs, offers, orders,
products, components, market reports, etc.) are Evaluable types. As shown in
the UML class diagram in Figure 4, each Evaluable can be queried for associ-
ated Evaluations, by passing it the name of the desired evaluation. The task
of mapping names to Evaluator instances is delegated to an EvaluationFac-
tory, which maintains a mapping of Evaluation names to Evaluator instances,
and is responsible for producing Evaluations when they are requested. It does
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this by inspecting the class of the Evaluable and the name of the requested
Evaluation, and invoking the appropriate evaluate method on an associated
Evaluator, as shown in Figure 5.

Evaluations are composable. Evaluators implement back-chaining by request-
ing other Evaluations in the process of producing their results, and therefore
many Evaluations are composed from other, presumably simpler, Evaluations.
Evaluators are hosted by the ORACLE component, which is responsible for
loading and configuring Evaluators. Evaluators are registered with the REPOS-
ITORY when they are configured, thus making them known to the Evaluation-
Factory. Because a given Evaluation may be requested multiple times during
the agent’s decision process, most Evaluators cache their results as long as
they have reason to believe they remain valid. In most cases, Evaluator re-
sults remain valid until the next data-available event arrives.

client thing:Evaluable :EvalutionFactory :Evaluator

[ [

| |

| |
o

3: lookup(name)
[ 4: evaluate(thing)

I
|
1: getEvaluation(name) | 2: evaluate(thing name)

5: update()

6: getData()

T | |
I

Fig. 5. Processing an evaluation.

Figure 6 shows a simple example of some Evaluable instances and a set of
Evaluations that might be associated with them. The price evaluation might
combine parts cost information with an estimate of current market conditions.
The profit evaluation could compute the difference between parts cost and
price. The sort-by-profit evaluation would need the profit evaluations on the
individual RFQs. Extended examples of our application of this mechanism
will be given later in Section 5.

4.4.1 Oracle

The ORACLE component is essentially a meta-component, since its only pur-
pose is to provide a framework for a set of small configurable components
that may be used to perform analysis and prediction tasks. Most of these are
Evaluators, but a few other types are supported as well. The ORACLE itself
simply reads its configuration data, and uses it to create and configure in-
stances of Evaluators and other subclasses of ConfiguredObject. The top-level
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Evaluable
getEvaluation()

N
CustomerRFQList CustomerRFQ
< >———1 model
quantity
dueDate
—| sort—by—profit | reservePrice

— price |
—| profit |

— order-probability |

Fig. 6. RFQ evaluation example. CustomerRFQList and CustomerRFQ are Evalu-
able instances, and the small rectangles represent Evaluations that might be asso-
ciated with them.

classes within the ORACLE component are shown in the UML class diagram

in Figure 7.

oracle repository
Oracle <<Interface>> <<Interface>>
-nameMap K_>——>| ConfiguredObject Evaluator
+configure() -name +evaluate(evaluable)
+startOfGame() +processConfig() +getName()
+createConfiguredObject () +getName()
+findConfiguredObject()
. JAN g
7 1 4
7 ’ . U 1 ’
-’ 1 /
7 1 4
4
AbstractSelector AbstractEvaluator
+processConfig() +processConfig()
+select() +evaluate()
+selectName() +getName()

Fig. 7. Principal classes in the ORACLE component.

ConfiguredObject is an abstract class whose instances have names and an abil-
ity to configure themselves, given an appropriate XML clause. The ORACLE
creates ConfiguredObject instances and keeps track of them by mapping their
names to instances '*. When it starts, the ORACLE processes a configuration
clause that typically includes at least two subclauses. The first is a <setup>
clause, which is processed at the time the ORACLE is created, during agent

1 This is a separate mapping from the one maintained by the EvaluationFactory
in the REPOSITORY (see Section 4.4). It serves a different purpose, and not every
ConfiguredObject is accessible outside the ORACLE, as Evaluators are.
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initialization. At this time, objects can be created that do not need access to
game parameters. A typical example is a model element that must read its
initialization data from a file or database that has been created off-line, per-
haps by analyzing prior games using machine learning techniques [22]. This
must be done before the game begins simply because of the time required to
set up these models; once the game begins, the agent must complete its work
in less than 15 seconds each day. Other clauses are processed by the ORA-
CLE after the start-of-game event has been received, thus allowing objects to
access game parameters from the REPOSITORY when they are created. For
example, many evaluators need to initialize themselves using data from the
server’s Component Catalog or Bill of Materials, which are sent to the agent
at the start of a game.

Figure 8 illustrates the configuration clause for an Evaluator called “order-
probability” that estimates the sales order probability for each product (the
order-probability evaluator in Figure 9) by combining a median price esti-
mate with a slope estimate. By convention, the output of any evaluator that
promises to estimate order probability is an object called a Pricer that has
two methods: getPrice() returns the predicted median price, and
getPriceForProbability(p) returns the price corresponding to the given
probability p. Inputs to this evaluator are two other evaluators, named “median-
price” and “slope-estimate.” The implementations of these evaluators are in
turn specified in other configuration clauses. Indeed, several different methods
of estimating median price and slope can be tested and compared simply by
changing the class associated with the name in the configuration file.

<evaluator class="edu.umn.cs.tac.oracle.eval.LinearOPEstimator"
name="order-probability">
<inputs>
<median source="median-price" />
<slope source="slope-estimate" />
</inputs>
</evaluator>

Fig. 8. Configuration clause for an order-probability estimator that uses a median
price and a slope estimate as data sources

The most common subclasses of ConfiguredObject are Evaluators and Selec-
tors. We have discussed Evaluators at length in Section 4.4, and we shall see
an extended example of their use in the next section. A Selector is simply a
switch that can be used to select different models or evaluators in different
game situations. For example, the early part of a game is typically charac-
terized by customer prices that start high and fall rapidly as agents acquire
parts and begin building up inventories. Later in the game, prices are less pre-
dictable and more sophisticated models may be useful. A simple DateSelector
can be used to switch between pricing models at a particular preset date, or
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a more sophisticated Selector could be used to switch models once the initial
price decline bottoms out. The selector is configured with the two models and
a mapping of dates to models. A call to its select () method returns the cor-
rect model for the current date. An interesting subtype of Selector is Mixer,
which blends one model into another over a period of time, thereby eliminat-
ing sharp transitions. This can be important when feedback loops are being
used to fine-tune model prices to the current game environment, as described
in the following section.

5 Examples

Here we describe in some detail three examples of the use and configuration
of evaluators in support of significant agent decision processes. The first is the
SALES component that was used in the 2006 Trading Agent Competition, in
which MinneTAC placed sixth overall. The second is the 2007 revision of the
SALES component, and the third is the PROCUREMENT component that ran
in the 2007 Trading Agent Competition.

5.1 Price-driven Sales

To illustrate the power of the MinneTAC design and its use of Evaluators, we
show in Figure 9 the evaluation chain that is used to produce sales quotas and
set prices in a relatively simple MinneTAC configuration. Each of the cells
in this diagram is an Evaluator. A version of the SALES component called
PriceDrivenSalesManager is conceptually very simple — it places bids on each
customer RFQ for which the randomized-price evaluator returns a non-zero
value. The core of this chain is the allocation evaluator, which composes and
solves a linear program each game day that represents a combined product-mix
and resource-allocation problem that maximizes expected profit. The objective
function is

= Eh: Z PagAdg (1)

d=0geg

where @ is the total profit over some time horizon h, G is the set of goods or
products that can be produced by the agent, ®4, is the (projected) profit for
good g on day d, and A, 4 is the allocation or “sales quota” for good g on day d.
The constraints are given by evaluators available-factory-capacity, the current
day’s effective-demand, projected future-demand, and by REPOSITORY data,
such as existing and projected inventories of parts and finished products, and
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outstanding customer and supplier orders. Predicted profit per unit ®4, for
each product type is the difference between Evaluations called median-price
and cost-basis for those products.

price—follower \slope—estimate \

|_: price—error ™ median—price 1 order—probability _I
cost-basis
available-supply 7| allocation & simple—price

A

| effective-demand

\

—

demand randomized—price

future—demand

available—factory—capacity

Fig. 9. Evaluator chain for sales quota and pricing.

The Evaluation generated by the allocation evaluator gives recommended sales
quotas for each product over a time horizon. Given a sales quota for a given
product, the demand for that product, and an order-probability function, the
simple-price evaluator computes a price that is expected to sell the desired
quota, assuming that price is offered on all the demand for that product. In
other words, if the quota is 25 units and the demand is for 100 units, simple-
price computes a price that is expected to be accepted by only 25% of the
customers. Since there is some uncertainty in the predictions of price and
order probability, randomized-price adds a slight variability to offer prices.
This improves the information content and reduces variability of the returned
orders.

Market prices are tracked by a price-follower evaluator, which observes the
daily high prices reported by the server. The price-follower implements a
straightforward double-exponential smoothing function

pricey” = a(pricey ™) + (1 — a) (pricey", + trend 1) (2)
trend g =y(price]™ — price]™,) + (1 — ) trend (3)

where price]™ is the observed high price for a given product on day d (the

highest price at which the product was sold on the previous day), price]™ is
the smoothed price for the current day d, trendy is the trend for the current
day, and « and ~ are the smoothing parameters. The resulting smoothed price
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estimate is too high to support sales, since it is tracking the daily high price,
and it depends strongly on the detailed behavior of other agents. Therefore,
we use a feedback mechanism to adjust our price estimates, as shown graph-
ically in Figure 10. Each day d, the order-probability evaluator generates a
pricing function Py(order|price). price® is the price computed for yesterday’s
sales quotas Qq_1. Yesterday’s observed price price®® is computed by apply-
ing yesterday’s pricing function to today’s customer orders Oy4. Recall that
orders from customers arrive the day after the offers were made. The correc-
tion computed by price-error is the difference between estimated and observed
prices

o - _obs . _est
err, = price®”® — price (4)

The median-price evaluator then computes a median price

d

price™ = price®™ + err, (5)

for the current day, giving the corrected output of price-follower.
P(order|price)

=~
~
~
N
N

Q

- ,,0bs - ,est .
rice rice rice
p p p >

Fig. 10. Estimating actual market price price®!, given sales quota @, order volume
O and an estimate of the order probability function P.

We have reported elsewhere [22] a different MinneTAC sales price model based
on Gaussian Mixture Models built out of evaluators. In that model the price-
follower, median-price, and order-probability evaluators shown in Figure 9 have
been replaced, and the slope-estimate evaluator omitted. Two ConfiguredOb-
ject types were added to load training data for the model when the agent
starts. This is the configuration that ran in the 2006 TAC SCM tournament;
the details are beyond the scope of this paper.
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5.2 Quota-driven Sales

In reality, the outline of the price-driven SALES component given in Section 5.1
is significantly oversimplified. This is because the uncertainty in price and
order-probability estimates can cause over-selling or under-selling against a
quota. Over-selling can be a significant problem when the actual sales volume
violates inventory or capacity constraints, with the result that the agent is
unable to ship customer orders on time. Late shipments are subject to sub-
stantial penalties, and therefore the price-driven sales component avoids over-
commitment through detailed accounting of commitments against inventory
constraints. The result is that the agent frequently fails to make enough offers
to meet its intended sales quotas, in return for avoiding late-delivery penalties.
This could be corrected by increasing prices slightly to account for a higher
order/offer ratio, but this design computes prices for the original quotas. The
price-adjusting feedback mechanism works on the assumption that the offered
price corresponds to the original quota/demand ratio, and this assumption
is frequently violated. The resulting variable difference between intended and
actual order/offer ratios introduces noise and reduces the effectiveness of the
feedback.

The MinneTAC configuration for 2007 took a somewhat different approach.
Instead of avoiding any possibility of overcommitment, it avoids overcommit-
ment in expectation, with an adjustable risk tolerance. The idea is that if we
know something about the probability of overcommitment, we can keep that
probability under control. Figure 11 shows a new evaluator feedback loop that
was added to the 2007 configuration.

customer orders *

\

sales—performance

Y
sales—performance-history ™ allocation

Fig. 11. Evaluator feedback chain for managing overcommitment.

In this configuration, the sales-performance evaluator compares quotas for
the previous day with orders on the current day, producing a ratio for each
product. This information is smoothed using a decaying rolling average in
sales-performance-history, which generates mean and standard deviation data
for the recent past. Under this scheme, allocation adjusts each of its current-
day sales quotas A4, as

constraint j,,
perf,+rt- oy,

) (6)

/ _ .
iy = min(Ag,,
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where Ay, is the quota value for product g produced by the linear program
described in Section 5.1, constraint;,, is the inventory constraint that (poten-
tially) limits the value of Ay, pT“fg is the rolling mean of sales performance
for g, o4 is the standard deviation of the recent performance history, and 77 is
a risk-tolerance parameter (typically set to 0.5). The actual computation is a
bit more complex than this, because inventory constraints due to individual
parts can apply to multiple products that require those parts, and so the con-
straint is typically on the sum of the product allocations associated with any
particular part.

We compared the performance of the 2006 and 2007 configurations with re-
gard to this modification by computing the ratios of offers to quotas, orders to
quotas, and orders to offers. As we can see in Table 3, the distributions of these
ratios are strongly skewed. This is evidenced by the large difference between
the mean and median values, and by the large standard deviations. There are
a few very large outliers in both data sets. These can happen in situations
with small quotas and high demand, if MinneTAC’s price estimate is too low.
Therefore we compared them with the Wilcoxon-Mann-Whitney two-sample
rank-sum test. The p column in Table 3 represent the (two-tailed) probability
that the corresponding data from the 2007 and 2006 games are from the same
distribution. It seems likely that the change from certain avoidance of over-
commitment to avoidance in expectation has changed the behavior. In fact,
the penalties paid due to overcommitments for the 2007 agent were under 1%
of revenue, while the penalties for the 2006 agent were only slightly lower,
about 0.8%. That is because the 2006 agent used absolute control of over-
commitment only with respect to inventory, and we experienced occasional
overcommitment of production capacity.

Table 3
Performance comparison of the 2006 and 2007 MinneTAC configurations.
MinneTAC 2006 MinneTAC 2007
mean | median | o mean | median o P

offer/quota || 3.41 1.33 | 8.86 || 4.43 1.35 | 1247 || < 0.01

order/quota || 2.05 091 | 717 | 1.84 0.98 6.77 || <0.01

order/offer || 0.58 0.80 | 0.44 || 0.57 0.69 0.40 || <0.01

This data comes from a set of games in the final rounds in the 2006 compe-
tition, and from the quarter-final rounds in the 2007 competition. We have
omitted data from the first 10 days and the last 10 days of each game, because
those data tend to be dominated by the extreme instability of price estimates
at the beginning and end of each game. The comparison is complicated by
several factors, including the high variability in the game environment, and
the fact that the 2006 data is from a different set of games, with a different
set of competitors, compared to the 2007 data. However, we are considering
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only an internal performance measure that should be relatively unaffected by
the competition or by the statistics of particular games. Because the 2007
agent is presumably doing a better job of matching its optimized quotas to
its actual sales behavior, we would expect the 2007 agent to exhibit more ag-
gressive selling, as evidenced by higher ratios of offers to quotas and of offers
to orders. However, assuming the price-tracking feedback is working well, we
should see smaller differences in the relationship between quotas and orders.
This is in fact what we observe. A more complete comparison of these con-
figurations, one that will allow us to show the impact of this small change on
agent profitability, will be performed using the method described by Sodomka
et al. in [34]. This method works by controlling the random number generators
in the game server that control customer demand, supplier capacity and other
sources of variability, thereby allowing the same game to be run with different
agents or agent configurations.

5.8  Procurement

Procurement decisions in a supply-chain trading agent must balance a number
of factors aside from ensuring that components are available to the manufac-
turing operation when they will be needed, and that sales is provided with
products it can sell at a profit. In supply-chain situations generally, it is com-
mon for prices to be lower for longer leadtimes and larger commitments, but
procurement must balance procurement cost against the cost to hold inventory,
and against the cost of acquiring and holding inventory that is not selling well
in the customer market. In many environments, including TAC SCM, reputa-
tion is also an issue. If suppliers are repeatedly asked to bid on large quantity
orders, and then the offers are rejected, suppliers will likely raise their offer
prices as a way of discounting the value of the uncertain business.

In Figure 12, we show the evaluator chain that drives procurement decisions
in MinneTAC. Note that the evaluator in the upper-left corner is allocation,
which we saw previously in Figure 9. This and the future-demand estimate
are the core elements of coordination between SALES and PROCUREMENT,
informing the PROCUREMENT decision process of what SALES would like to
sell, while informing SALES of the most profitable way to use the components
that PROCUREMENT has made available. Note that this approach risks a bad
positive feedback loop. If inventories fall short, then sales quotas will fall, and
procurement will receive a signal to purchase fewer parts. This problem is
avoided by using the safety-stock-monitor to override the resulting low quotas
when they are caused by inventory shortages. An alternative method that is
being explored for the 2008 design is to run the allocation optimization twice,
once with inventory constraints to drive sales, and once without inventory
constraints to drive procurement.
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Fig. 12. Evaluator chain for procurement in MinneTAC.

The key elements of the procurement decision process are the price-model
and estimates of needed supply over both short-term and longer-term time
horizons. The price-observer evaluator monitors all interactions with suppliers
that might produce price signals, and supplies a preliminary price model based
on a weighted nearest-neighbors method similar to that used by Benisch et al.
in the 2005 CMieux agent [5]. Some of those signals are produced from price-
probes — simple requests to suppliers for future price estimates that carry no
commitment to purchase. Probes are generated by probing-rfqs when the price
model’s data quality falls below a threshold, generally due to poor coverage
of a potentially interesting future time period. Since supplier pricing in TAC
SCM is a well-known function of demand and supply, another element of the
pricing model is the availability-estimate, which estimates supplier capacity
from information about expected future opponent-demand and from supplier-
availability data derived from observed prices, and from situations where a
supplier is unable to fulfill a request due to lack of capacity.

Demand for components must be estimated over a relatively long horizon in
order to achieve good prices in the procurement market. Part of that infor-
mation comes from the allocation module that we discussed in Section 5.1,
and part comes from longer-term estimates based on general knowledge of the
game environment. These are combined in products-needed. The capacity lim-
its of the production facility are factored in by projected-production-schedule,
and the conversion from products to parts is made by needed-for-schedule. This
is combined with inventory monitoring from safety-stock-monitor to produce
an integrated view of future component requirements in components-needed.
Finally, procurement-rfqs combines future component needs with the price
model and a second inventory monitor overstock-monitor that is focused on
minimizing end-of-game inventory to produce sets of RFQs that are expected
to procure the needed components at the lowest possible price.

28



6 Evaluation

The software architecture of MinneTAC is strongly focused on strict control
of dependencies, and on flexible configuration. We evaluate the success of this
design by asking three questions:

(1) Does the agent perform well, and to what extent does the design affect
agent performance?

(2) How does the design rate on objective measures of design quality?

(3) Does the design meet the “usability” challenges described in Section 2.27

6.1 Performance

There are two measures of agent performance that could be affected by the
design. We will start by evaluating overhead: Does the design impose an unac-
ceptable runtime overhead? We can also measure how well the agent performs
in competition against other agents that have been implemented with different
designs.

The Excalibur framework does indeed impose some overhead when the agent
starts up, since it must read configuration files, find and load code for com-
ponents, and set up and configure the components. However, once the agent
is running, there is essentially no overhead imposed by the framework. Event
processing and evaluation is done by direct lookup, since event handlers and
Evaluators are registered when components are loaded. We have run 6 Min-
neTAC agents (with a simple Sales component) on the same desktop machine
(a 1 GHz Pentium), and all 6 agents are able to complete their daily decision
procedures in less than 1 second. A Sales component that relies on solving a
linear program each round takes longer, but its performance is almost entirely
determined by the time required to compose and solve the linear program.

MinneTAC has done reasonably well in the official TAC SCM tournaments
since 2003. In 2005 and 2006 it was a finalist. Each year, MinneTAC has been
fielded with a new implementation of at least one of the decision components
(SALES, PROCUREMENT, PRODUCTION, and SHIPPING), and several others
have been implemented but have not been entered into the competition. The
ease with which these new components could be implemented and configured
into the agent is a testament to the design we describe here.
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6.2 Design quality

Mitch Kapor says that software design bridges the world of people and human
purpose with the world of technology [20]. Tt’s easy to understand what that
means when the artifact is a desktop application intended to be used directly
by people. But in fact, the first users of a software design are the programmers
who implement it and extend it. The programmer who must change it later
is perhaps even more strongly impacted. From the implementer’s standpoint,
good design is easy to understand, easy to implement correctly, and easy to
maintain. From the maintainer’s standpoint, a good design is one that is easily
understood, and that can sustain change without losing integrity.

A great many qualitative and quantitative metrics have been proposed to
measure the quality of software design [7,17,6]. Unfortunately, most of them
do not produce absolute results but rather comparisons between alternative
designs, and most of them are not directly applicable to component-oriented
systems such as MinneTAC in which the primary design artifacts that we wish
to measure are multi-class components rather than individual classes. One
quality metric that is applicable is Martin’s coupling metrics [29] using afferent
coupling C, to measure dependencies of other components on the elements of
a given component, and efferent coupling C. to measure dependencies of a
component on other components. In an ideal system, each component has
either C, = 0 or C, = 0, which means that each component is either a source
or a sink of dependencies, but not both. In such a design, it is relatively easy
for developers to determine the likely results of changes, and components for
which C; = 0 can be freely modified without concern for violating assumptions
that might be made by developers of other components.

Table 4

Design quality metrics for MinneTAC components.
Component Cy | Co | 1
SALES 0 171
PROCUREMENT 0] 1|1
DELIVERY 0 171
ProbucTIiON 0] 1|1
COMMUNICATION | 0| 1|1
ORACLE 0] 2|1
LPSOLVER 1 0]0
REPOSITORY 6 00

In Table 4 we see the Martin dependency metrics for the 2007 MinneTAC
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configuration, as determined by the jDepend tool'®. This configuration in-

cludes an additional component to encapsulate the Ip_solve linear program-
ming solver, used by an evaluator that computes sales quotas as described in
Section 5.1. The final column gives the “Instability” measure [ = C,./C, + C,,
which is intended to indicate the systems resilience to change originating in
that component. A score close to zero indicates that the stability of the en-
tire system depends on the stability of that component, while a score close
to one indicates that the system’s stability does not depend on stability of
that component. In the case of MinneTAC, the LpSolver component is simply
a wrapper for a stable third-party package, and the REPOSITORY contains
essentially the entire state of the agent. Both have been extremely stable over
the last five years, while many different versions of the other components have
been introduced without worry about affecting the viability of the agent.

Of course, there is another sort of dependency in the design of MinneTAC that
is not captured by standard design-quality metrics. That is the dependency of
the behavior of decision components on the detailed behavior of specific evalu-
ators, and the need for effective coordination of the various decision processes.
The good news is that researchers can freely experiment with these behaviors
and coordination schemes without concern for whether the agent will build
and run correctly.

6.3  Usability

The principal usability criterion is whether researchers can effectively work
on the various decision problems independently, and whether they can extract
the data they need to analyze performance and confirm or refute hypotheses.

There is considerable evidence that our design has met its goals.

e Inexperienced student programmers have been able to contribute significant
functionality without needing to understand the entire system. Examples
include two different SHIPPING components, two different PRODUCTION
components, five different SALES components, six different PROCUREMENT
components, and over 80 different Evaluators, written by 22 students over
a period of four years. Most of them worked on MinneTAC for just one
semester.

One undergraduate designed, built, and tested a complete procurement
manager with active supplier price modeling, consisting of 11 evaluators
and a procurement component, with a total of about 4600 lines of code,
in a semester. This was possible because the simple structure of evaluators

Y http://clarkware.com/software/Depend. html
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makes it easy to decompose complex decision processes into small pieces
with simple structure.

e The standardized log-message format produced by the Excalibur infrastruc-
ture makes data extraction relatively easy, even though MinneTAC gener-
ates approximately 5Mb of data for a typical game. A wide variety of anal-
yses have been carried out with this data. An example of such an analysis
is given in [25], where we were able to show that the original design of the
game gave a large advantage to the agent that won a procurement lottery
on the first day of the game.

e Selectors and Mixers (see Section 4.4.1) are very recent additions to the Min-
neTAC design, and they add considerable expressive power for constructing
models that can learn and adapt to market conditions. Once the need was
clear, they were added and tested in less than four hours, and required no
other changes in the rest of the system.

e MinneTAC is an open-source project, available at http://tac.cs.umn.edu.
The source release includes the full infrastructure, and relatively simple ex-
amples of each of the decision components, a few evaluators, and a sample
set of configuration files. It has been downloaded over 900 times since its ini-
tial release in April 2005. There have also been over 1000 binary downloads
of the 2005 and 2006 competition versions of MinneTAC, which include some
relatively complex evaluators that are not sufficiently documented or tested
for source release. One user of the source download is a group at Kansas
State University, whose agent MinneKatTac was entered in the 2007 com-
petition. They have told us'® that they evaluated multiple available source
packages on which to build their agent, and MinneTAC was the easiest to
understand and work with.

In any complex system, there are potential usability problems. A downside
of configurability is the risk that the reduction in complexity on one area
may be offset by an increase in complexity in another. The configuration
needed to construct complex evaluator chains like the pricing chain shown in
Figure 9 is large and difficult to understand in the verbose XML format. The
version of MinneTAC used in the 2007 Trading Agent Competition uses 66
evaluators, with multiple feedback loops. This raises two questions: (1) Would
any other approach lead to a system that is easier to understand? (2) Could a
tool be found or built that would reduce the cognitive burden of constructing
and understanding these complex configurations? We are in the process of
constructing such a tool.

A second potential usability problem for complex software systems is the dif-
ficulty of determining whether they are actually working as intended. This
problem is compounded by the TAC simulation environment, which imposes
hard time limits on agent decision processes. This means that developers can-

16 private communication
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not stop and resume the agent with a debugging tool. But many systems
operate with such constraints. A common solution is to write unit tests for
individual components, and use standard program debugging tools in the test
environment. This approach works well with the MinneTAC design.

7 Conclusions and Future Work

Future generations of e-commerce decision support systems will very likely in-
volve a mixture of mixed-initiative and autonomous systems that will help or-
ganizations to discover opportunities, evaluate tradeoffs, coordinate processes
within and across organizations, and conduct business in increasingly compet-
itive markets. Developing the next generation of systems and understanding
their dynamics will require a significant body of experimental work. The Trad-
ing Agent Competition is an example of an experimental environment that can
stimulate needed developments.

Experimental work with multi-agent systems requires an implementation. Of-
ten, the design qualities that best support experimental work are different
from those normally considered “ideal” in industry. In complex economic sce-
narios such as TAC SCM, the desired design qualities include clean separation
of infrastructure from decision processes, ease of implementation of multiple
decision processes, clean separation of different decision processes from each
other, and controllable generation of experimental data. In a competitive envi-
ronment, the ability to easily compose multiple agents with different combina-
tions of decision process implementations makes it possible to test hypotheses
about the effectiveness of competing decision models.

To understand how others have addressed the issues of agent design for the
TAC SCM scenario, we conducted an informal survey of teams who have been
involved in the competition over the last few years. Many of the top teams
responded, and we see a wide variety of approaches. It appears that much of
this variety arises from the broad range of research questions that are being
addressed in the context of the competition. Many teams identified “modular-
ity” as a significant feature of their designs. Indeed, modular software design
appears to be a requirement for an agent that can remain viable in the competi-
tion environment for multiple years. This is because the research environment
and the annual cycle of publication drives a need to frequently change im-
plementation features in order to improve performance, test hypotheses, and
gather data for empirical study.

We described the design of MinneTAC, an agent that is modular in the ex-
treme. It is constructed using the Apache Excalibur component framework,
which provides the ability to compose agent systems from sets of individual
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components based on simple configuration files. We also showed that two ba-
sic mechanisms, event distribution with a variant of the Observer pattern,
and composable Evaluations, permit an appropriate level of component in-
teraction without introducing unnecessary coupling among components. The
ability to compose complex evaluator chains out of relatively simple, straight-
forward elements has greatly simplified the design of the decision components
themselves.

The MinneTAC architecture could clearly be used to implement a wide variety
of agent behaviors, including those of most of our TAC SCM competitors. To
do so, the problem of composing and understanding large evaluator networks
must be solved. A graphical tool for visualizing and constructing evaluator
chains is currently in development. A longer-term solution might be to add
detailed semantic descriptions to the Evaluator interfaces, and enable semi-
automatic composition. This is similar to the problem of composing Web Ser-
vices, as described by Sirin et al. [33]. Rao et al. [32] argue that fully-automatic
service composition may be an unrealistic goal, and propose a mixed-initiative
approach.

The combination of Evaluators with Selectors and similar types of “switches”
enables a range of behaviors that we have barely explored. One that we are
currently pursuing is to add an “executive” component that would allocate
“resources” to competing implementations of basic decision processes within
a single agent. This would allow a high degree of adaptability in the game
environment, where the level of demand can fluctuate greatly, and where the
actions of other agents can have a significant impact on the markets.
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Appendix: TAC SCM Design Questionnaire

The following questions were used in the design survey described in Section 3:

) Which team do you represent? What has been your role on the team?

(2) What are the main goals of your design apart from winning the game?

) What are your organizing design principles (architectural style, major
modules and responsibilities)?

(4) What are the strengths and weaknesses of your design? In other words,
what is easy and what is hard to do given your design? To what extent
do you feel your design has met your goals?

(5) If you have been in the competition for more than two years, have you
made significant changes in your design and why?

(6) Does your design represent a significant departure from the Agentware

package?
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(7) Which significant 3rd party packages have you used, e.g. Weka, CPlex,
Apache Excalibur, Jade, etc.?

(8) Have you based your design on a publicly-available agent design, like
TacTex, GeminiJK, or MinneTAC?

(9) Have you published information about your agent design? If yes, where?
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